Assessment and Treatment of Hypertriglyceridemia
Hypertriglyceridemia

• What is the risk burden of hypertriglyceridemia?
• What is the clinical and genetic evidence for the association between elevated TG and atherosclerosis?
• What are the evidence-based guideline recommendations for managing patients with hypertriglyceridemia?
• What TG-lowering agents are available, and what are their anti-atherosclerotic and anti-inflammatory properties?

TG=triglycerides.
Hypertriglyceridemia: Prevalence, Risk, and Screening
Sex, Race, and Hypertriglyceridemia (Fasting TG ≥150 mg/dL)

NHANES=National Health and Nutrition Examination Surveys; TG=triglyceride; US=United States.
Carroll MD et al. NCHS Data Brief, No 198. National Center for Health Statistics. 2015.
Obesity and Hypertriglyceridemia (Fasting TG ≥150 mg/dL)

BMI=body mass index; NHANES=National Health and Nutrition Examination Surveys; TG=triglyceride; US=United States.

Carroll MD et al. NCHS Data Brief, No 198. National Center for Health Statistics. 2015.
Secondary Causes of Hypertriglyceridemia

<table>
<thead>
<tr>
<th>Cause</th>
<th>Clinically Useful Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caloric imbalance1</td>
<td>↓ Exercise, ↑ Saturated fat, ↑ Glycemic index, excess alcohol intake</td>
</tr>
<tr>
<td>↑ Carbohydrate intake1</td>
<td>↑ Simple sugars (fructose >> glucose, etc.) and ↓ Dietary fiber</td>
</tr>
<tr>
<td>Adiposity1</td>
<td>Especially ↑ visceral adiposity</td>
</tr>
<tr>
<td>Diabetes mellitus1</td>
<td>Especially if poorly controlled</td>
</tr>
<tr>
<td>Hypothyroidism1</td>
<td>If not adequately controlled</td>
</tr>
<tr>
<td>Nephrotic syndrome1</td>
<td></td>
</tr>
<tr>
<td>Medications1</td>
<td>Antiretroviral regimens (for HIV); some phenothiazines and second-generation antipsychotics; nonselective beta-blockers; thiazide diuretics; oral estrogen; tamoxifen; glucocorticoids; Isotretinoin</td>
</tr>
<tr>
<td>Recreational drugs2</td>
<td>Marijuana (↑ Apo C-III)</td>
</tr>
</tbody>
</table>

Apo=apolipoprotein; HIV=human immunodeficiency virus.

High TG Levels Are Often Associated with Other Heart Disease Risk Factors

- Obesity/insulin resistance\(^1-3\)
- Physical inactivity\(^3,4\)
- Diabetes mellitus\(^1,3,5\)
- High blood pressure\(^1\)
- Elevated cholesterol levels\(^1\)
- Low HDL-C levels\(^1\)
- Elevated uric acid levels\(^6\)

HDL-C=high-density lipoprotein cholesterol; TG=triglycerides.
Elevated TG Levels: Screening and Risk Assessment

- Fasting TG levels should be part of routine lipid screening
- Classification of elevated TG should be incorporated into risk assessments to aid in treatment decisions:
 - Moderately elevated TG levels (≥150 mg/dL) may identify individuals at risk for the insulin resistance syndrome
 - TG levels ≥200 mg/dL may indicate a substantial increase in ASCVD risk

<table>
<thead>
<tr>
<th>TG category</th>
<th>Fasting TG concentration (mg/dL)</th>
<th>TG goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><150</td>
<td><150 mg/dL</td>
</tr>
<tr>
<td>Borderline high</td>
<td>150-199</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>200-499</td>
<td></td>
</tr>
<tr>
<td>Very high</td>
<td>≥500</td>
<td></td>
</tr>
<tr>
<td>Severe^4</td>
<td>1000-1999 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Very Severe^4</td>
<td>>2,000 mg/dL</td>
<td></td>
</tr>
</tbody>
</table>

ASCVD=atherosclerotic cardiovascular disease; TG=triglyceride.
Elevated TG Levels:
Screening and Risk Assessment

- TG levels increase with age, and the importance of HTG as an ASCVD risk factor also appears to increase with age
- High serum TG levels may act synergistically with other lipid abnormalities to increase ASCVD risk
- Serum TG levels may also predict coronary risk when they are associated with a high LDL-C to HDL-C ratio (>5), or when HDL-C levels are low
- Several studies indicate that postprandial, or nonfasting, TG may be an equally or more potent ASCVD risk factor than fasting TG
 - Two major prospective studies:
 - The Women’s Health Study (N=26,509, 11.4-year follow-up) and the Copenhagen City Heart Study (N=13,981, 26-year follow-up), found that non-fasting TGs were independently associated with MI and ischemic heart disease

ASCVD=atherosclerotic cardiovascular disease; HDL-C=high-density lipoprotein cholesterol; HTG=hypertriglyceridemia; LDL-C=low-density lipoprotein cholesterol; MI=myocardial infarction; TG=triglycerides.

Plasma TG Independently Predicts CVD Death and Total Mortality, Meta-Analysis of >1 Million Patients

33 studies evaluating CVD mortality (17,018 CVD deaths among 726,030 patients) and 38 studies evaluating all-cause mortality (58,419 all-cause deaths among 330,566 patients).

Median duration of follow-up was 12.0 years; patients with diabetes, CVD, or cancer were excluded.

<table>
<thead>
<tr>
<th>TG quartile/mg/dL</th>
<th>CVD Mortality</th>
<th>All-Cause Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR</td>
<td>P-value</td>
</tr>
<tr>
<td>I. <90</td>
<td>0.83</td>
<td>0.001</td>
</tr>
<tr>
<td>II. 90-149 (referent)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>III. 150-199</td>
<td>1.15</td>
<td>0.015</td>
</tr>
<tr>
<td>IV. ≥200</td>
<td>1.25</td>
<td>0.013</td>
</tr>
</tbody>
</table>

CVD=cardiovascular disease; RR=relative risk; TG=triglyceride.
Proposed Mechanisms of Triglyceride-rich Lipoproteins in Atherosclerosis

Inflammation, coagulation, and endothelial dysfunction in the vessel lumen also cross the endothelium, leading to foam cell formation and plaque formation and progression.

LPL=lipoprotein lipase; TRL=triglyceride-rich lipoprotein; TRL-R=triglyceride-rich lipoprotein remnants.
Among Patients with Severe HTG, Patients with FCS Have the Highest Risk of Pancreatitis

Risk of Acute Pancreatitis Associated with Moderate and Severe HTG Compared to Normolipidemic Individuals

- **Referent comparator normolipidemic individuals (<440 mg/dL) n=364**
- **Moderate HTG**: TG: ~440 to ~800 mg/dL n=487
 - Odds Ratio: 16
- **All Severe HTG (> ~800 mg/dL)**
 - n=354
 - Odds Ratio: 56
- **FCS* Severe HTG (> ~800 mg/dL)**
 - n=28
 - Odds Ratio: 361

*Only includes patients with LPL mutation and <5% LPL functionality
FCS=familial chylomicronemia syndrome; HTG=hypertriglyceridemia; LPL=lipoprotein lipase gene; TG=triglyceride.
Hypertriglyceridemia: Recommendations for Management
AACE ACSVD Risk Factor Modifications

Apo B=apolipoprotein B; ASCVD=atherosclerotic cardiovascular disease; CKD=chronic kidney disease; CVD=cardiovascular disease; DM=diabetes mellitus; FH=familial hypercholesterolemia; HDL-C=high-density lipoprotein cholesterol; HTN=hypertension; Hx=history; LDL-C=low-density lipoprotein cholesterol; LDL-P=low-density lipoprotein particle; OM3=omega-3; PCSK9i=proprotein convertase subtilisin/kexin type 9 inhibitor; Rx=prescription; TG=triglyceride Garber AJ, et al. Endocr Pract. 2018 Jan;24(1):91-120.
Treatment Objectives for Elevated TGs

<table>
<thead>
<tr>
<th>Triglyceride Level</th>
<th>Rationale (Primary Goal) for Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Very High” TGs ≥500 mg/dL</td>
<td>Prevention of Pancreatitis*</td>
</tr>
<tr>
<td>“High” or “Moderate Hypertriglyceridemia” 200-499 mg/dL</td>
<td>Prevention of CVD*</td>
</tr>
</tbody>
</table>

* To date, no large clinical outcome trials have been completed to provide support.

CVD=cardiovascular disease; TG=triglyceride.
Hypertriglyceridemia Treatment Summary: Part 2

• After addressing secondary risk factors and implementing lifestyle therapy, treat with pharmacotherapy (combination therapy usually required):
 • TG ≥500 mg/dL to prevent pancreatitis and atherosclerosis
 • Prescription-grade omega-3 fatty acids and/or
 • Fibrates and/or
 • Nicotinic acid (lowers VLDL-C and VLDL-triglycerides)
 • TG 200-499 mg/dL to achieve LDL-C and non-HDL-C goal
 • Statins (lowers LDL-C and VLDL-C)
 • Omega-3 Fatty acids and/or
 • Fibrates and/or
 • Nicotinic acid

HDL-C=high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol; TG=triglyceride; VLDL=very low-density lipoprotein; VLDL-C=very low-density lipoprotein cholesterol.
Pharmacotherapy for Hypertriglyceridemia: Options, Considerations, and Evidence
Drug Classes Used to Treat HTG

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>% TG Lowering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>6% to 30%</td>
</tr>
<tr>
<td>Fibrates</td>
<td>20% to 35%</td>
</tr>
<tr>
<td>Omega-3 Fatty Acids</td>
<td>27% to 45%</td>
</tr>
<tr>
<td>Niacin</td>
<td>20% to 30%</td>
</tr>
<tr>
<td>MTP Inhibitor*</td>
<td>~45%</td>
</tr>
</tbody>
</table>

*Lomitapide; Data from small trial limited to patients with heterozygous familial hypercholesterolemia

- Niacin or fibrates in combination with statins may be appropriate options for many individuals with hypertriglyceridemia and associated low HDL-C.
- Omega-3 fatty acid (fish oil) supplementation (2 to 4 g/day) is supported for individuals with TG levels >500 mg/L.

HDL-C=high-density lipoprotein cholesterol; HTG=hypertriglyceridemia; MTP=Microsomal triglyceride transfer protein; TG=triglyceride.

Statins: Starting Dosages, Dose Ranges, and Metabolic Effects

<table>
<thead>
<tr>
<th>Statin</th>
<th>Recommended Starting Daily Dose</th>
<th>Dosage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lovastatin1</td>
<td>20 mg</td>
<td>10-80 mg</td>
</tr>
<tr>
<td>Pravastatin2</td>
<td>40 mg</td>
<td>10-80 mg</td>
</tr>
<tr>
<td>Simvastatin3</td>
<td>20-40 mg</td>
<td>5-80 mga</td>
</tr>
<tr>
<td>Fluvastatin4</td>
<td>40 mg</td>
<td>20-80 mg</td>
</tr>
<tr>
<td>Atorvastatin5</td>
<td>10-20 mg</td>
<td>10-80 mg</td>
</tr>
<tr>
<td>Rosuvastatin6</td>
<td>10 mg</td>
<td>5-40 mg</td>
</tr>
<tr>
<td>Pitavastatin7</td>
<td>2 mg</td>
<td>2-4 mg</td>
</tr>
</tbody>
</table>

Metabolic Effects:8

- Inhibits HMG-CoA reductase, a key rate-limiting enzyme in hepatic cholesterol synthesis
 - Triggers increased expression of hepatic LDL receptors and increased LDL-C clearance
- Decreases plasma LDL-C in a dose-dependent fashion by 20%-55%
- Exerts modest lowering effects on VLDL-C, IDL-C, and TG (10%-30%)
- Raises HDL-C by 2%-10%
- Improves LDL subfraction profiles (atorvastatin and rosvastatin)
 - Larger clinical trials may be necessary to confirm effect of statins on LDL particle size and density

a Simvastatin, 80 mg, not approved for therapy unless individual has been on treatment for more than 1 year without myopathy. ASCVD=atherosclerotic cardiovascular disease; HDL-C=high-density lipoprotein cholesterol; HMG-CoA=3-hydroxy-3-methyl-glutaryl-coenzyme A; IDL=intermediate-density lipoprotein cholesterol; LDL=low-density lipoprotein; LDL-C=low-density lipoprotein cholesterol; TG=triglycerides; VLDL-C=very low-density lipoprotein cholesterol. See notes for references.
Main Considerations

- Liver function test prior to therapy and as clinically indicated thereafter
- Myalgias and muscle weakness may present in some individuals
- Potential for drug-drug interaction between some statins and CYP450 3A4 inhibitors, such as cyclosporine, warfarin, and protease inhibitors, and multiple other medications
- Myopathy/rhabdomyolysis in rare cases; increased risk with coadministration of some drugs (see product labeling)
- Simvastatin dosages should not exceed 40 mg in most individuals; dosages of 80 mg are no longer recommended except in those who have tolerated 80 mg for 12 months or more without muscle toxicity
- Do not exceed 20 mg simvastatin daily with amlodipine or ranolazine
- Plasma elevations of rosuvastatin may be higher among Asian persons than other ethnic groups
- New-onset diabetes is increased in individuals treated with statins; however, it is dose-related, occurs primarily in individuals with MetS, appears to be less common with pravastatin and possibly pitavastatin, and occurs overall to a lesser extent than the associated decrease in ASCVD

ASCVD=atherosclerotic cardiovascular disease; MetS=metabolic syndrome.
Statins Reduce CVD Events in Patients with HTG (HTG Subgroup Data; Median follow-up: ≥5 years)

<table>
<thead>
<tr>
<th>Trial (Subgroup, mg/dL) (drug)</th>
<th>Risk difference vs placebo (P-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All subjects</td>
</tr>
<tr>
<td>WOSCOPS (TG ≥148) (Pravastatin)</td>
<td>−31% (<0.001)</td>
</tr>
<tr>
<td>CARE (TG ≥144) (Pravastatin)</td>
<td>−24% (0.003)</td>
</tr>
<tr>
<td>PPP Project (TG ≥200) (Pravastatin)</td>
<td>−23% (<0.001)</td>
</tr>
<tr>
<td>4S (TG >159, HDL-C <39) (Simvastatin)</td>
<td>−34% (<0.001)</td>
</tr>
<tr>
<td>JUPITER (TG ≥150) (Rosuvastatin)</td>
<td>−44% (<0.001)</td>
</tr>
<tr>
<td>CTT (TG >177) (Various)</td>
<td>−21% (<0.001)</td>
</tr>
</tbody>
</table>

CARE=Cholesterol and Recurrent Events Trial; CTT=Cholesterol Treatment Trialists; HTG=hypertriglyceridemia; JUPITER=Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin; NS=not significant; PPP=Prospective Pravastatin Pooling; 4S=Scandinavian Simvastatin Survival Study; WOSCOPS=West of Scotland Coronary Prevention Study; yrs=years.

Fibrates: Starting Dosages, Dose Ranges, and Metabolic Effects

<table>
<thead>
<tr>
<th>Agent</th>
<th>Usual recommended starting daily dosage</th>
<th>Dose range</th>
<th>Method of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenofibrate</td>
<td>48-145 mg</td>
<td>48-145 mg</td>
<td>Oral</td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>1,200 mg</td>
<td>1,200 mg</td>
<td>Oral</td>
</tr>
<tr>
<td>Fenofibric acid</td>
<td>45-135 mg</td>
<td>45-135 mg</td>
<td>Oral</td>
</tr>
</tbody>
</table>

Metabolic Effects:

- Primarily ↓ TG 20%-35%, ↑ HDL-C 6%-18% by stimulating lipoprotein lipase activity
- Fenofibrate may ↓ TC and LDL-C 20%-25%
- Lower VLDL-C and LDL-C; reciprocal rise in LDL-C transforms the profile into a less atherogenic form by shifting fewer LDL particles to larger size
- Fenofibrate ↓ fibrinogen level

HDL-C=high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol; TC=total cholesterol; TG=triglycerides; VLDL-C=very low-density lipoprotein cholesterol.

Fibrates: Main Considerations

- Gemfibrozil may ↑ LDL-C 10%-15%¹
- GI symptoms, possible cholelithiasis¹
- May potentiate effects of orally administered anticoagulants¹
- Gemfibrozil may ↑ fibrinogen level¹
- Gemfibrozil and fenofibrate can ↑ homocysteine independent of vitamin concentrations¹
- Myopathy/rhabdomyolysis when used with statin¹
- Fibrates are associated with increased serum creatinine levels, which may not reflect renal dysfunction¹
- Fenofibrate dose should be cut by two-thirds and gemofibrozil by one-half when eGFR is 30-59, and fibrates should be avoided when eGFR is <30²
- May cause muscle disorders¹
- Can improve diabetic retinopathy¹

eGFR=estimated glomerular filtration rate; GI=gastrointestinal; LDL-C=low-density lipoprotein cholesterol.
Long-Term Efficacy of Adding Fenofibric Acid to Moderate-Dose Statin Therapy in Patients with Persistent Elevated Triglycerides

- Proportion of patients with optimal levels of lipids at baseline (after 12 weeks of treatment with moderate-dose statin) and at week 12 and final visit (week 52) after addition of fenofibric acid to moderate-dose statin therapy

Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study

• Does a statin plus a fibrate reduce CVD* compared to statin monotherapy in T2D patients at high risk for CVD disease?

• All patients (N=5,518) on simvastatin (mean dose: 22.3 mg/day) randomized to fenofibrate (54 mg or 160 mg) or placebo

• Mean follow-up 4.7 years

<table>
<thead>
<tr>
<th>Baseline cholesterol (all patients)</th>
<th>Mean (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>175</td>
</tr>
<tr>
<td>LDL-C</td>
<td>100</td>
</tr>
<tr>
<td>HDL-C</td>
<td>38</td>
</tr>
<tr>
<td>Non-HDL-C</td>
<td>137</td>
</tr>
<tr>
<td>TG (median)</td>
<td>162</td>
</tr>
</tbody>
</table>

*Primary outcome: first nonfatal MI, nonfatal stroke, or death from CVD
CI=confidence interval; CVD=cardiovascular disease; f/u=follow-up; HDL-C=high-density lipoprotein cholesterol; HR=hazard ratio; LDL-C=low-density lipoprotein cholesterol; MI=myocardial infarction; T2D=type 2 diabetes; TC=total cholesterol; TG=triglycerides.
The ACCORD Study Group. NEJM. 2010; 362:1563-1574.
ACCORD-Lipid: Primary Outcomes High TG/Low HDL-C vs All Others in Full Cohort

Numeric benefit with fenofibrate treatment was confined to the high TG/low HDL-C subgroup, comprising <18% of trial population.

Major fatal or nonfatal CV events

<table>
<thead>
<tr>
<th></th>
<th>Simva</th>
<th>Simva + Fen</th>
</tr>
</thead>
<tbody>
<tr>
<td>High TG (>204 mg/dL and low HDL (<34 mg/dL)</td>
<td>17.32%</td>
<td>12.37%</td>
</tr>
<tr>
<td>17.6% (n=941) of entire cohort</td>
<td>31% lower event rate with simva+fen; adjusted (P=0.057)</td>
<td></td>
</tr>
<tr>
<td>79/456</td>
<td>60/485</td>
<td></td>
</tr>
</tbody>
</table>
| All others in entire cohort 82.4% (n=4,548) of entire cohort | 10.11% | 10.11%
| 229/2,264 | 231/2,284 |

ACCORD=Action to Control Cardiovascular Risk in Diabetes; CV=cerebrovascular; HDL=high-density lipoprotein; HDL-C=high-density lipoprotein cholesterol; TG=triglycerides.

Baseline ‘Moderate Dyslipidemia’ (TG>200, HDL-C<35-40 mg/dL) Predicts 26%-35% Significant CVD Risk Reduction from PPAR-a Agonists (Fibrates = Gemfibrozil, Bezafibrate, Fenofibrate)

HHS, BIP, VA-HIT, FIELD, ACCORD-Lipid

<table>
<thead>
<tr>
<th>Fibrate groups</th>
<th>Low HDL</th>
<th>High TG</th>
<th>High TG, Low HDL</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacks et al.</td>
<td>0</td>
<td>0</td>
<td>-35</td>
<td>-6</td>
</tr>
<tr>
<td>Bruckert et al.</td>
<td>-17</td>
<td>-28</td>
<td>-30</td>
<td>-6</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>-16</td>
<td>-25</td>
<td>-26</td>
<td>-4</td>
</tr>
</tbody>
</table>

ACCORD=Action to Control Cardiovascular Risk in Diabetes; BIP=Bezafibrate Infarction Prevention; CVD=cardiovascular disease; FIELD=Fenofibrate Intervention and Event Lowering in Diabetes; HDL=high-density lipoprotein; HHS=Helsinki Heart Study; NR=not reported; PPAR-a=peroxisome proliferator-activated receptor alpha; TG=triglyceride; VA-HIT=Veterans Affairs High-Density Lipoprotein Intervention Trial.

Omega-3 Fatty Acids: Starting Dosages, Dose Ranges, and Metabolic Effects

<table>
<thead>
<tr>
<th>Agent</th>
<th>Usual recommended starting daily dosage</th>
<th>Dosage range</th>
<th>Method of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega-3 fatty acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega-3-acid ethyl esters (Lovaza)¹</td>
<td>4 g per day</td>
<td>4 g per day</td>
<td>Oral</td>
</tr>
<tr>
<td>Icosapent ethyl (Vascepa)²</td>
<td>4 g per day</td>
<td>4 g per day</td>
<td>Oral</td>
</tr>
</tbody>
</table>

Metabolic Effects:³

- **↓ TG 27%-45%,** TC 7%-10%, VLDL-C 20%-42%, apo B 4%, and non-HDL-C 8%-14% in individuals with severe HTG most likely by reducing hepatic VLDL-TG synthesis and/or secretion and enhancing TG clearance from circulating VLDL particles. Other potential mechanisms of action include: increased β-oxidation; inhibition of acyl-CoA; 1,2-diacylglycerol acyltransferase; decreased hepatic lipogenesis; and increased plasma lipoprotein activity.
- Icosapent ethyl **↓ LDL-C 5%**, whereas, omega-3-acid ethyl esters **↑ LDL-C 45%**

Apo B=apolipoprotein B; HDL-C=high-density lipoprotein cholesterol; HTG=hypertriglyceridemia; LDL-C=low-density lipoprotein cholesterol; TC=total cholesterol; TG=triglycerides; VLDL=very low-density lipoprotein. ¹. Lovaza (omega-3-acid ethyl esters) [PI]; 2015; ². Vascepa (icosapent ethyl) [PI]; 2016; ³. Jellinger PS, et al. *Endocr Pract.* 2017 Apr;23(Suppl 2):1-87.
Omega-3 Fatty Acids: Main Considerations

Main Considerations¹-³

• Assess TG levels prior to initiating and periodically during therapy.
• Omega-3-acid ethyl esters can increase LDL-C levels. Monitor LDL-C levels during treatment.
• May prolong bleeding time. Monitor coagulation status periodically in patients receiving treatment with omega-3 fatty acids and other drugs affecting coagulation.
• Monitor ALT and AST levels periodically during treatment in patients with hepatic impairment. Some patients may experience increases in ALT levels only.
• Exercise caution when treating patients with a known hypersensitivity to fish and/or shellfish.
• The effect of omega-3 fatty acids on cardiovascular morbidity and mortality and the risk of pancreatitis has not been determined in patients with severe hypertriglyceridemia.
• In patients with paroxysmal or persistent atrial fibrillation, therapy with omega-3-acid ethyl esters may be associated with increased frequency of symptomatic AF or flutter, especially within the first 2 to 3 months after initiation.
• Most common adverse events include arthralgia (2.3%), eructation (4%), dyspepsia (3%), and taste perversion (4%). May also experience constipation, gastrointestinal disorders, vomiting, rash, or pruritus.
• Pharmaceutical doses should be used with caution in nursing mothers and only be used in pregnant women if the benefits of treatment outweigh the potential risk of fetal harm.

AF=atrial fibrillation; ALT=Alanine transaminase; AST=aspartate aminotransferase; LDL-C=low-density lipoprotein cholesterol; TG=triglycerides.

REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial)

REDUCE-IT Study Design and Objectives

Eligibility criteria:
- Age ≥45 years with CVD, or ≥50 years with diabetes with ≥1 additional risk factor for CVD
- Fasting TG levels ≥150mg/dL* and <500 mg/dL
- LDL-C >40mg/dL and ≤100mg/dL and on stable statin therapy (± ezetimibe) for ≥4 weeks prior to randomization

Primary outcome: Composite of CV death, nonfatal MI, nonfatal stroke, coronary revascularization, unstable angina

Key secondary outcome: Composite of CV death, nonfatal MI, or nonfatal stroke

Study design: Phase 3B, multi-center, randomized, double-blind, placebo-controlled trial with long-term follow-up at 470 centers, worldwide

Primary objective: To assess whether treatment with icosapent ethyl reduces ischemic events in statin-treated patients with high TG at elevated CV risk

*Due to the variability of TGs, a 10% allowance existing in the initial protocol, which permitted patients to be enrolled with qualifying TG ≥135 mg/dL. CV, cardiovascular; CVD, cardiovascular disease, LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; TG, triglycerides. Bhatt DL, et al. Clin Cardiol. 2017;40(3)138-148. (Epub prior to print).
Niacin: Starting Dosages, Dose Ranges, Metabolic Effects, and Main Considerations

<table>
<thead>
<tr>
<th>Niacin (nicotinic acid)</th>
<th>Usual recommended starting daily dosage</th>
<th>Dose range</th>
<th>Method of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate release¹</td>
<td>250 mg</td>
<td>250-3,000 mg</td>
<td>Oral</td>
</tr>
<tr>
<td>Extended release²</td>
<td>500 mg</td>
<td>500-2,000 mg</td>
<td>Oral</td>
</tr>
</tbody>
</table>

Metabolic Effects:¹
- ↓ ApoB, VLDL, TG 20%-30%
- ↓ LDL-C 10%-25%
- ↑ HDL-C 10%-35% by decreasing hepatic synthesis of VLDL-C-TG and ultimately LDL-C
- ↓ Lipoprotein (a)
- Lowering TG and raising HDL-C is associated with less-atherogenic LDL phenotype B, increased average LDL-P size, decreased LDL-P concentration, and reduced highly atherogenic TG-rich remnant cholesterol

Main Considerations:¹
- Potential for frequent skin flushing, pruritus, GI symptoms (including abdominal discomfort), hepatotoxicity (rare but may be severe), nausea, peptic ulcer, atrial fibrillation
- Increased bleeding may occur, especially when aspirin is utilized to reduce flushing symptoms
- Deleterious effect on serum glucose levels at higher dosages
- Increases uric acid levels, may lead to gout

Apo=apolipoprotein; HDL-C=high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol; LDL-P=low-density lipoprotein particle; TG=triglyceride; VLDL-C=very low-density lipoprotein cholesterol.
On April 18th 2016, the FDA announced retraction of prior approvals related to combinations of statins with niacin extended release (ER) and statins with fenofibric acid delayed release (DR). The decision to remove these indications was prompted by evidence from three large published trials, which failed to show reductions in important cardiovascular events when either niacin ER or fenofibric acid DR was added to statin therapy in the populations studied. The FDA has concluded that existing evidence does not support...
Algorithm for Managing Severe Hypertriglyceridemia (TG>1000 mg/dL)

Acute management
- Abdominal pain, +/- pancreatitis,

Dietary measures:
- NPO, IV fluids; Insulin (if diabetes)

Add:
- Rx-grade omega-3 ethyl esters

Add:
- Fibrates to omega-3

Add:
- Niacin to fibrates and omega-3

Consider:
- Medium-chain TG

If TG not at desirable level
- When TG are lowered to <500 mg/dL, secondary targets become non-HDL-C, LDL-C, and LDL-P; begin statin therapy

Chronic management
- Dietary measures: low CHO, <20 g LC-FA/day, MCT-rich diet, abstinence from alcohol

If poorly responsive, consider FCS, restricted fat diet, (may need apheresis [plasmapheresis]) until TG <1000 mg/dL

CHO=carbohydrate; FCS=familial chylomicronemia syndrome; HDL-C=high-density lipoprotein cholesterol; IV=intravenous; LC-FA=long-chain fatty acid; IV=intravenous; LDL-C=low-density lipoprotein cholesterol; LDL-P=low-density lipoprotein particle; MCT=medium-chain triglycerides; NPO=nothing by mouth; Rx=prescription; SHTG=severe hypertriglyceridemia; TG=triglyceride.

Ongoing and Planned CV Outcomes Trials Dedicated to Patients with Hypertriglyceridermia

<table>
<thead>
<tr>
<th></th>
<th>STRENGTH (Ongoing)</th>
<th>PROMINENT (Planned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>EPA+DHA (FFA) 4 g/d</td>
<td>SPPARMα – Pemafibrate 0.2 mg bid</td>
</tr>
<tr>
<td>Dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>International</td>
<td>International</td>
</tr>
<tr>
<td>N</td>
<td>Estimated 13,000</td>
<td>Estimated 10,000</td>
</tr>
<tr>
<td>Age</td>
<td>≥18 years</td>
<td>≥18 years</td>
</tr>
<tr>
<td>Risk Profile</td>
<td>CVD (50%) or ↑CVD risk (50%)</td>
<td>T2D only CVD (2/3) or ↑CVD risk (1/3)</td>
</tr>
<tr>
<td>Follow-up</td>
<td>3–5 years (planned)</td>
<td>5 years (planned)</td>
</tr>
<tr>
<td>Statin Use</td>
<td>100% (at LDL-C goal)</td>
<td>Moderate-/high-intensity or LDL <70 mg/dL</td>
</tr>
<tr>
<td>1° EP</td>
<td>Expanded MACE</td>
<td>Expanded MACE</td>
</tr>
<tr>
<td>Result</td>
<td>Powered for 15% RRR</td>
<td>Powered for 18% RRR</td>
</tr>
<tr>
<td>Entry TG</td>
<td>200 to 499 mg/dL</td>
<td>200 to 499 mg/dL</td>
</tr>
<tr>
<td>Entry HDL</td>
<td><40 mg/dL M, <45 mg/dL W</td>
<td><40 mg/dL W</td>
</tr>
</tbody>
</table>

CVD=cardiovascular disease; DHA=docosahexaenoic acid; EPA=eicosapentaenoic acid; HDL=high-density lipoprotein; LDL-C=low-density lipoprotein cholesterol; MACE=major adverse cardiovascular event; PROMINENT=Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides IN Patients With diabetes; REDUCE-IT=Reduction of Cardiovascular Events With EPA - Intervention Trial; STRENGTH=Statin Residual Risk Reduction With EpaNovo in High CV Risk Patients With Hypertriglyceridemia; T2D=type 2 diabetes; TG=triglyceride.

As a component of the insulin resistance (metabolic) syndrome, HTG predicts incident T2D and ASCVD.
Severe HTG/chylomicronemia predicts high risk for acute pancreatitis.
Elevated small, dense LDL particle numbers and TG-rich lipoprotein remnants contribute to increased atherogenicity, relative to LDL-C, associated with HTG.
The TG in TG-rich remnant particles may have independent inflammatory properties.
AACE recommends screening for and management of HTG as a standard part of a lipid management.
Recommended TG-lowering therapeutic options for TG>500 mg/dL, to reduce pancreatitis risk include:
 • Fibrates, omega-3 fatty acids, and niacin, usually in combination
 • For TG >180 to 499 mg/dL, maximal-tolerated statins followed by specific TG-lowering agents as needed

AACE=American Association of Clinical Endocrinologists; ASCVD=atherosclerotic cardiovascular disease; HTG=hypertriglyceridemia; LDL=low-density lipoprotein; LDL-C=low-density lipoprotein cholesterol; T2D=type 2 diabetes; TG=triglyceride.